1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775
| #include<stdio.h> #include<stdlib.h> #include<math.h> #define MAX_TERMS_NUMBER 100 typedef struct lnode { float coef; int expn; struct lnode* next; }lnode, * polynomial;
void print_menu(void); void descend_polyn(polynomial &P); void delete_0(polynomial &P); void merge_polyn(polynomial &P); void creat_polyn(polynomial &P); void print_polyn(polynomial &P); void destroy_polyn(polynomial &P); void copy_polyn(polynomial &Pa, polynomial &Pb); void add_polyn(polynomial &Pa, polynomial &Pb); void minus_polyn(polynomial &Pa, polynomial &Pb); void mult_polyn(polynomial &Pa,polynomial &Pb,polynomial &Pc); void power_polyn(polynomial &Pa,polynomial &Pb,int n); void calculate_polyn(polynomial &P); void div_polyn(polynomial &Pa,polynomial &Pb,polynomial &Pc,polynomial &Pd); void minus_polyn2(polynomial &Pa,polynomial &Pb,polynomial &Pc); void gcd_polyn(polynomial &Pa,polynomial &Pb,polynomial &Pc); void diff_polyn(polynomial &P,int k); void indefinite_integral(polynomial &Pa,polynomial &Pb); void definite_integral(polynomial &P,float a,float b); double evaluation_polyn(polynomial &P,float k); int get_order(void);
void print_menu() { printf("********说明:本程序使用指针数组存放每个多项式,至多存储100个多项式,请牢记每个多项式的位置下标********\n\n"); printf("==================================================菜单==================================================\n\n"); printf(" 1.创建多项式 2.打印显示多项式\n\n"); printf(" 3.销毁多项式 4.复制多项式\n\n"); printf(" 5.求两个多项式的和 6.求两个多项式的差\n\n"); printf(" 7.求两个多项式的积 8.求一个多项式的n次幂\n\n"); printf(" 9.计算一个多项式在x=a处的值 10.两个多项式的商和余式\n\n"); printf(" 11.求两个多项式的最大公约式 12.求两个多项式的最小公倍式\n\n"); printf(" 13.求一个多项式的n阶导函数 14.求一个多项式的不定积分\n\n"); printf(" 15.求一个多项式在区间[a, b]上的定积分 16.清屏并显示所有多项式\n\n" ); printf(" 17.退出\n\n"); } void descend_polyn(polynomial &P) { polynomial pre,p; int i = 0; float j = 0; for(pre=P->next;pre!=NULL;pre=pre->next){ for(p=pre->next;p!=NULL;p=p->next){ if (pre->expn < p->expn) { i = p->expn; p->expn = pre->expn; pre->expn = i; j = p->coef; p->coef = pre->coef; pre->coef = j; } } } } void delete_0(polynomial &P) { polynomial p,pre,q; pre=P;p=pre->next; while(p!=NULL){ if(p->coef==0){ q=p; pre->next=p->next; p=pre->next; free(q); } else{ pre=pre->next; p=p->next; } } } void merge_polyn(polynomial &P) { if(P==NULL) return; polynomial pre,p,p1; for(pre=P->next;pre!=NULL&&pre->next!=NULL;pre=pre->next) { p=pre->next; while(p!=NULL) { if(p->expn==pre->expn){ pre->coef=pre->coef+p->coef; for(p1=pre;p1->next!=p;p1=p1->next); p1->next=p->next; free(p); p=pre; } p=p->next; } } } void creat_polyn(polynomial &P){
int m,i; polynomial p,pre; printf("接下来要输入的多项式共有几项?:"); while(scanf("%d",&m)!=1||m<=0){ printf("输入不合法,请输入大于零的数!"); printf("请输入多项式项数:"); while (getchar()!='\n') continue; } while (getchar()!='\n') continue; P=(lnode *)malloc(sizeof(lnode)); pre=P; for(i=0;i<m;i++){ p=(lnode *)malloc(sizeof(lnode)); printf("请输入第%d项系数:",i+1); while(scanf("%f",&p->coef)!=1){ printf("输入不合法,请输入一个实数!"); while (getchar()!='\n') continue; } while (getchar()!='\n') continue; printf("请输入第%d项指数:",i+1); while(scanf("%d",&p->expn)!=1||p->expn<0){ printf("输入不合法,请输入大于等于零的数!"); printf("请输入系数:"); while (getchar()!='\n') continue; } while (getchar()!='\n') continue; pre->next=p; pre=p; pre->next=NULL; } descend_polyn(P); merge_polyn(P); delete_0(P); } void print_polyn(polynomial &P){
if(P==NULL){ printf("该多项式不存在"); return ; } polynomial p=P->next; if(p==NULL) printf("0"); if(p!=NULL){ if(p->expn==0){ printf("%f",p->coef); } if(p->expn==1){ if(p->coef==1) printf("x"); if(p->coef==-1) printf("-x"); if(p->coef!=1&&p->coef!=-1) printf("%fx",p->coef); } if(p->expn>1) { if(p->coef==1) printf("x^%d",p->expn); if(p->coef==-1) printf(" -x^%d",p->expn); if(p->coef!=-1&&p->coef!=1) printf("%fx^%d",p->coef,p->expn); } for(p=p->next;p!=NULL;p=p->next){ if(p->coef>0){ if(p->expn==0) printf("+%f",p->coef); if(p->expn==1){ if(p->coef==1) printf("+x"); else printf("+%fx",p->coef); } if(p->expn>1){ if(p->coef==1) printf("+x^%d",p->expn); else printf("+%fx^%d",p->coef,p->expn); } } else{ if(p->expn==0) printf("%f",p->coef); if(p->expn==1){ if(p->coef==-1) printf("-x"); else printf("%fx",p->coef); } if(p->expn>1){ if(p->coef==1) printf("-x^%d",p->expn); else printf("%fx^%d",p->coef,p->expn); } } } } } void destroy_polyn(polynomial &P){
polynomial p=P->next,q; while(p!=NULL){ q=p; p=p->next; P->next=p; free(q); } free(P); P=NULL; } void copy_polyn(polynomial &Pa, polynomial &Pb){
polynomial p,q,qre; Pb=(lnode *)malloc(sizeof(lnode)); qre=Pb; for(p=Pa->next;p!=NULL;p=p->next){ q=(lnode *)malloc(sizeof(lnode)); q->coef=p->coef; q->expn=p->expn; qre->next=q; qre=q; qre->next=NULL; } } void add_polyn(polynomial &Pa, polynomial &Pb){
polynomial p,pa; p=Pa->next; if(Pa==NULL) { printf("\n第一个多项式不存在"); return ; } if(Pb==NULL) { printf("\n第二个多项式不存在"); return ; } pa=Pa; while(p!=NULL){ pa=p; p=p->next; } pa->next=Pb->next; free(Pb); descend_polyn(Pa); merge_polyn(Pa); delete_0(Pa); } void minus_polyn(polynomial &Pa, polynomial &Pb){
polynomial p,q,pa,pb; if(Pa==NULL) { printf("\n被减式多项式不存在"); return ; } if(Pb==NULL) { printf("\n减式多项式不存在"); return ; } p=Pa->next; q=Pb->next; pa=Pa; pb=Pb; while(q!=NULL){ q->coef=0-q->coef; pb=q; q=q->next; } while(p!=NULL){ pa=p; p=p->next; } pa->next=Pb->next; free(Pb); Pb=NULL; descend_polyn(Pa); merge_polyn(Pa); delete_0(Pa); } void mult_polyn(polynomial &Pa,polynomial &Pb,polynomial &Pc){
if(Pa==NULL){ printf("ERROR!第一个多项式不存在!!"); return ; } if(Pb==NULL){ printf("ERROR!第二个多项式不存在!!"); return ; } polynomial pa,pb,pc,r;int e;float c; Pc=(lnode*)malloc(sizeof(lnode)); pa=Pa->next; pc=Pc; Pc->next=NULL; while(pa!=NULL){ pb=Pb->next; while(pb!=NULL){ e=pa->expn+pb->expn; c=pa->coef*pb->coef; pb=pb->next; r=(lnode*)malloc(sizeof(lnode)); r->expn=e; r->coef=c; pc->next=r; pc=pc->next; pc->next=NULL; } pa=pa->next; } descend_polyn(Pc); merge_polyn(Pc); delete_0(Pc); if(Pc->next==NULL) { Pc->next=(lnode*)malloc(sizeof(lnode)); Pc->next->coef=0; Pc->next->expn=0; Pc->next->next=NULL; } } void power_polyn(polynomial &Pa,polynomial &Pb,int n){
int i; polynomial Pc; if(!Pa) { printf("ERROR!多项式不存在!\n"); return; } if(n==1) { mult_polyn(Pa,Pa,Pb); } if(n>=2) { mult_polyn(Pa,Pa,Pb); for(i=1;i<n;i++) { mult_polyn(Pa,Pb,Pc); destroy_polyn(Pb); Pb=Pc; } } } void calculate_polyn(polynomial &P){
float f,m=0; polynomial p=P->next; if(P==NULL) { printf("\n多项式不存在"); return ; } printf("请输入x的值:"); while(scanf("%f",&f)!=1){ printf("输入不合法,请输入一个实数!"); while (getchar()!='\n') continue; } while (getchar()!='\n') continue; for(p=P->next;p!=NULL;p=p->next){ if(p->expn==0) m+=p->coef; if(p->expn!=0){ m+=p->coef*pow(f,p->expn); } } printf("当x=%d时,该多项式的值为%f\n",f,m); } void div_polyn(polynomial &Pa,polynomial &Pb,polynomial &Pc,polynomial &Pd){ polynomial d,pa,pb,pc,pcr;int t; if(Pa==NULL) { printf("\n被除式多项式不存在"); return ; } pa=Pa->next; pb=Pb->next; Pc=(lnode*)malloc(sizeof(lnode)); pcr=Pc; if(pb==NULL) { printf("除数为0,error!"); return; } t=pb->expn; if(pa->expn<t) { Pc->next=(lnode*)malloc(sizeof(lnode)); Pc->next->coef=0; Pc->next->expn=0; Pc->next->next=NULL; copy_polyn(Pa,Pd); return; } while(pa->expn>=t) { pc=(lnode*)malloc(sizeof(lnode)); pcr->next=pc; delete_0(Pb); pc->coef=(pa->coef)/(pb->coef); pc->expn=pa->expn-pb->expn; pc->next=NULL; pcr=pc; mult_polyn(Pb,Pc,d); minus_polyn2(Pa,d,Pd); if(Pd->next==NULL)break; pa=Pd->next; } } void minus_polyn2(polynomial &a,polynomial &b,polynomial &d){
polynomial pa1,pb1,pc1,p1,s1;float temp; d=(lnode*)malloc(sizeof(lnode)); d->next=NULL; pc1=d; pa1=a->next; pb1=b->next; while(pa1!=NULL&&pb1!=NULL) { if(pa1->expn==pb1->expn){ temp=(pa1->coef)-(pb1->coef); if(fabs(temp)>0.0001) { s1=(lnode*)malloc(sizeof(lnode)); pc1->next=s1; pc1=pc1->next; pc1->coef=temp; pc1->expn=pa1->expn; } pa1=pa1->next; pb1=pb1->next; } else { s1=(lnode*)malloc(sizeof(lnode)); if(pa1->expn>pb1->expn) { pc1->next=s1; pc1=pc1->next; pc1->coef=pa1->coef; pc1->expn=pa1->expn; pa1=pa1->next; } else { pc1->next=s1; pc1=pc1->next; pc1->coef=-(pb1->coef); pc1->expn=pb1->expn; pb1=pb1->next; } } } if(pa1!=NULL) {p1=pa1; while(p1!=NULL) { pc1->next=(lnode*)malloc(sizeof(lnode)); pc1=pc1->next; pc1->coef=p1->coef; pc1->expn=p1->expn; p1=p1->next; } } else {p1=pb1; while(p1!=NULL) { pc1->next=(lnode*)malloc(sizeof(lnode)); pc1=pc1->next; pc1->coef=-(p1->coef); pc1->expn=p1->expn; p1=p1->next; } } pc1->next=NULL; } void gcd_polyn(polynomial &pa,polynomial &pb,polynomial &pc){ polynomial a,b,c,d; if(pa==NULL) { printf("\n第一个多项式不存在"); return ; } if(pb==NULL) { printf("\n第二个多项式不存在"); return ; } copy_polyn(pa,a); copy_polyn(pb,b); div_polyn(a,b,c,d); while(d->next!=NULL) { copy_polyn(b,a); destroy_polyn(b); copy_polyn(d,b); destroy_polyn(d); div_polyn(a,b,c,d); }
pc=b; } void diff_polyn(polynomial &pl,int k){
polynomial pa,par;int i; if(pl==NULL) { printf("\n多项式不存在"); return ; } pa=pl->next; par=pl; while(pa!=NULL) { if(pa->expn<k) { par->next=pa->next; pa=par->next; } else { for(i=0;i<k;i++){ pa->coef=pa->coef*(pa->expn); pa->expn=pa->expn-1; } pa=pa->next; par=par->next; } } if(pl->next==NULL) { printf("0"); } } void indefinite_integral(polynomial &pl,polynomial &a){
polynomial p,pa,par; if(pl==NULL) { printf("\n多项式不存在"); return ; } p=pl->next; a=(lnode*)malloc(sizeof(lnode)); par=a; while(p!=NULL) { pa=(lnode*)malloc(sizeof(lnode)); pa->coef=(p->coef)/(p->expn+1); pa->expn=p->expn+1; par->next=pa;par=pa; p=p->next; } pa->next=NULL; } void definite_integral(polynomial &pl,float a,float b){
polynomial pa; if(pl==NULL) { printf("\n多项式不存在"); return ; } indefinite_integral(pl,pa); printf("值为%f\n",(evaluation_polyn(pa,b)-evaluation_polyn(pa,a))); } double evaluation_polyn(polynomial &P,float k){
float m=0; if(P==NULL) { printf("\n多项式不存在"); return 0; } polynomial p=P->next; for(p=P->next;p!=NULL;p=p->next){ if(p->expn==0) m+=p->coef; if(p->expn!=0){ m+=(p->coef)*pow(k,p->expn); } } return m; } int get_order(){
int i=0; while(scanf("%d",&i)!=1||(i<0||i>=MAX_TERMS_NUMBER)){ printf("ERROR!请输入0~99的数!"); while (getchar()!='\n') continue; } while (getchar()!='\n') continue; return i; } int main(){ int x,j=0,k=0,i,l,m; polynomial P[MAX_TERMS_NUMBER],p1,p2,p3; float a,b; polynomial s[MAX_TERMS_NUMBER]; for(j=0;j<MAX_TERMS_NUMBER;j++) { P[j]=NULL; } print_menu(); for(;;) { printf("要执行的操作为?(请输入1~17的数字):"); while(scanf("%d",&x)!=1||(x<=0||x>=18)){ printf("ERROR!请输入1~17的数字!"); while (getchar()!='\n') continue; } while (getchar()!='\n') continue; switch(x){ case 1: printf("请输入要存放多项式的位置的下标:"); k=get_order(); creat_polyn(P[k]); printf("创建成功\n"); print_menu(); break; case 2: printf("输入要打印的多项式位置下标:"); k=get_order(); print_polyn(P[k]); printf("\n"); print_menu(); break; case 3: printf("输入要销毁的多项式位置下标:"); k=get_order(); destroy_polyn(P[k]); printf("销毁成功\n"); print_menu(); break; case 4: printf("输入要复制的多项式位置下标:"); k=get_order(); printf("输入复制后的多项式存储的位置下标:"); j=get_order(); copy_polyn(P[k],P[j]); print_polyn(P[j]); printf("\n"); print_menu(); break; case 5: printf("请输入第一个多项式存放的位置:"); j=get_order(); printf("请输入第二个多项式存放的位置:"); k=get_order(); add_polyn(P[j], P[k]); print_polyn(P[j]); printf("\n"); print_menu(); break; case 6: printf("请输入第一个多项式(被减数)存放的位置:"); j=get_order(); printf("请输入第二个多项式(减数)存放的位置:"); k=get_order(); minus_polyn(P[j], P[k]); print_polyn(P[j]); printf("\n"); print_menu(); break; case 7: printf("输入要相乘的第一个多项式位置下标:"); j=get_order(); printf("输入要相乘的第二个多项式位置下标:"); k=get_order(); printf("输入要存放新多项式位置下标:"); l=get_order(); mult_polyn(P[j],P[k],P[l]); print_menu(); break; case 8: printf("输入要做幂运算的多项式位置下标:"); k=get_order(); printf("要做几次方?"); while(scanf("%d",&m)!=1||m<=1){ printf("ERROR!请输入大于等于2的整数!"); while (getchar()!='\n') continue; } while (getchar()!='\n') continue; printf("输入要存放新多项式位置下标:"); l=get_order(); power_polyn(P[k],P[l],m-1); print_menu(); break; case 9: printf("输入要求值的多项式位置下标:"); k=get_order(); calculate_polyn(P[k]); print_menu(); break; case 10: printf("输入要被除的的多项式位置下标:"); j=get_order(); printf("输入要当做除数的的多项式位置下标:"); k=get_order(); printf("输入要存放商的位置下标:"); l=get_order(); printf("输入要存放余数的位置下标:"); i=get_order(); div_polyn(P[j],P[k],P[l],P[i]); print_menu(); break; case 11: printf("输入求最大公因式的第一个多项式:"); j=get_order(); printf("输入求最大公因式的第二个多项式:"); k=get_order(); printf("输入存放最大公因式位置下标:"); l=get_order(); gcd_polyn(P[j],P[k],P[l]); print_menu(); break; case 12: printf("输入求最小公倍式的第一个多项式:"); j=get_order(); printf("输入求最小公倍式的第二个多项式:"); k=get_order(); printf("输入存放最小公倍式位置下标:"); l=get_order(); mult_polyn(P[j],P[k],p1); gcd_polyn(P[j],P[k],p2); div_polyn(p1,p2,P[l],p3); print_menu(); break; case 13: printf("输入要求微分的的多项式位置下标:"); j=get_order(); printf("输入要求导的次数:"); while(scanf("%d",&k)!=1||x<=0){ printf("ERROR!请输入大于零的整数!"); while (getchar()!='\n') continue; } while (getchar()!='\n') continue; diff_polyn(P[j],k); print_menu(); break; case 14: printf("输入用来求不定积分的的多项式位置下标:"); j=get_order(); printf("输入存放新多项式位置下标:"); k=get_order(); indefinite_integral(P[j],P[k]); print_polyn(P[k]); printf("+C"); printf("\n"); print_menu(); break; case 15: printf("输入要求定积分的的多项式位置下标:"); j=get_order(); printf("输入积分域的下界:"); while(scanf("%f",&a)!=1){ printf("ERROR!请输入正确的实数!"); while (getchar()!='\n') continue; } while (getchar()!='\n') continue; printf("输入积分域的上界:"); while(scanf("%f",&b)!=1){ printf("ERROR!请输入正确的实数!"); while (getchar()!='\n') continue; } while (getchar()!='\n') continue; definite_integral(P[j],a,b); print_menu(); break; case 16: system("cls"); print_menu(); for(i=0;i<MAX_TERMS_NUMBER;i++){ if(P[i]!=NULL){ printf("第%d个多项式为:",i); print_polyn(P[i]); printf("\n"); } } break; case 17: exit(0); default : break; } } return 0; }
|